
ISRAEL JOURNAL OF MATHEMATICS, Vol. 29, Nos. 2-3, 1978 

INCOMPLETE POLYNOMIALS OF BEST 
APPROXIMATION* 

BY 

G.G. LORENTZ 

ABSTRACT 

The main theorem proved in this paper is as follows. There exist odd functions 
f C C [ -  1, 1] with the following property. Let P~ he the polynomial of best 
uniform approximation to f of degree -< n. Then for infinitely many n, Pn has 
zero of order s(n)~ c log n at x = 0. 

§1.  L e m m a s  a n d  i n t e r m e d i a t e  r e s u l t s  

We use the term " incomple te  po lynomia l"  to deno te  a polynomial  of  the form 

(1.1) P.(x) = £ akx k , 
k = s  

where s > 0. We would like to have s as large as possible. In [1] we have proved,  

among  other  things, the existence of  a function 0 < A ( 0 ) <  1, defined for 

0 <  0 < 1 with the following proper ty .  If P,(x) is a sequence  of polynomials  

(defined for infinitely many  n)  of  form (1.1) with s = s (n)  >= On, and if I P,(x)l _~ 1 

on [0,1], then P n ( x ) ~ O  uniformly on each interval [0,~],  ~ < A(0); this is n o t  

always true for ~ > A(0). The  exact value of  A(0) is not  known,  but we have 

shown in [1] that  02 =< A(0) < 0, 0 < 0 < 1. Moreover ,  R. Varga  (private com- 

municat ion)  finds that 

A(0) 37r z 
lim 0:  < = 1.850.. .  
0~o = 16 

In the present  paper,  we investigate the possibility that a given function 

f E C[  - 1, + 1] has incomplete  polynomials  as its polynomials  of  best approxi-  

mation.  Our  main result is that  s (n)  >-_ const ,  log n can happen  infinitely often for 

such polynomials.  
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The problem solved here has been formulated jointly by J. Biatter and the 

author at IMPA (Rio de Janeiro) in the Summer of 1976. I am indebted to K. 

Zeller for the idea of using series (3.1) in this problem. 

THEOREM 1. Let P., P,,+~ be polynomials of best approximation (of degrees <= n 

and <- n + 1, respectively) to f ~ C[a,b], and let P,~P,+~. Then O = P,+I-  P. 

has n + l  distinct real zeros, which lie in the open interval (a,b). 

PROOF. Let a=<x~<x2<- - -<x ,+2_-<b  be n + 2  points of the (~eby~ev 

alternance for P,; if for instance f ( x ~ ) - P . ( x ~ ) >  0, then 

f ( x , ) -  P.(x,) = [[f - P.I[ > [[f - P.+, 11 -> f ( x , ) -  P.+, (x,), 

so that O(x~) < 0. Similarly, O(x~+,) > 0. Thus, O changes sign on each of the 

intervals [x~, x~+,]. 

REMARK. The same proof yields, for two polynomials P, ~P, . ,  m > n  of best 

approximation, the fact that P,, and P. cannot have a common root of 

multiplicity > m - n. 

To S. Bernstein we owe the observation that if bk => 0, Zbk < + ~, then all 

partial sums of f = ZobkT3~ (where T, denotes the n-th (~eby~ev polynomial) 

are polynomials of best approximation to f on [ -  1, 1]. It is important to know 

that the restriction b~ => 0 is not essential. 

THEOREM 2. Let nj, p , j  = 0 , 1 , . . .  be odd positive integers so that n,_, 

divides nj. 

Let the bi satisfy Zo l bj I < + ~, and let 

(1.2) f ( x )  = ~ bjT.,(x) pi. 
j=0 

I f  for an integer k >= 1 

(1.3) nk-lp~ t + 2 <= n~ , 

then the sum P = Z~ ' bjTP.'j is the polynomial of best approximation o f f  among all 

polynomials of degree < n~ - 2 (hence also among all polynomials of degree 

<= nk-lpk 1). 

PROOF. 

given by 

Let g(x)  = E7=k bj TP, I; we consider the function h on the circle T 

h ( t ) = g ( c o s t ) =  ~ bjcosP, njt, t E T .  
j=k 
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We may assume that g and h are not identically zero. Noticing that ½ (nj/nk + 1) 

is an integer  for  j -_> k, we have,  with c = 7r/(2nk), 

h (c +-- t) = 2 bjej sin p, ( - nit), ej = ( - 1) ~"/"~+I~p, . 
j=k 

Hence  h (c - t) = - h (c + t), that  is, h is odd at the point  c E T. It follows that h 

has a maximum M > 0  and a min imum - M  on T. 

Now h has per iod 27r/n~, hence  M and - M  are taken on each of the n~ 

intervals 

2¢rl 2 r r ( / + l ) )  l = O , . . - , n k - 1  
nk ' nk 

There  must be a m o n o t o n e  sequence  of 2n~ points on T, where h takes 

al ternatively the values + M and - M .  On at least one  of the intervals [0, 7r], 

[ - 7r,0], we have a sequence  of this type consisting of nk points. Since h is even, 

this happens  on each of them. The  same is t rue for g (x) ,  - 1 < x _-< + 1. In view 

of (1.3), our  s ta tement  follows from the theorem of (?eby~ev. 

Let  f E C[a, b]. Is it possible that polynomials  P~ of best approximat ion  to f 

are incomple te  polynomials  (1.1) with large s -- s (n )?  This cannot  happen for  all 
large n. Indeed,  by T h e o r e m  1, unless P~ and Pn.l are identical, they cannot  have 

0 as a common  zero of multiplicity s => 2, and if Off (a ,b) ,  this cannot  happen 

even with s ~ 1. However ,  the p h e n o m e n o n  in quest ion can happen infinitely 
often. 

In §3 we prove that one  can have s = s (n )>  c log n, for  infinitely many n. In 

the opposi te  direction,  we have,  if all integral values are taken by s(n), 

(1.4) s(n)_-<const X/n, n = 1 , 2 , - . . .  

Indeed,  let ns be selected so that s(n)  = s for  n = ns. The  remark  to T h e o r e m  1 

gives n, - n,_l _-> s - 1, hence ns >= ½s(s - 1). 

Polynomials  P,  of best approximat ion  of f ~ C [ -  1, + 1] can all vanish for 

x = 0; this happens  for all odd functions f. We offer the conjec ture  that this is the 

only possible case. 

CONJECTURE. If all polynomials  of best approximat ion  of f E C [ - 1 ,  + 1] 

vanish at the origin, then f is odd. 

A related conjec ture  has been formula ted  by I. Borosh:  A function f E  

C [ -  1, + 1] is odd if its polynomials  of best approximat ion  satisfy P2k-l = P2E, 
k = 1, 2, - . . ;  it is even if P2k = P2~÷l, k -- 0, 1, . . -  . 
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§2. Estimation of Vandermonde determinants 

We shall need  results about  the V a n d e r m o n d e  de te rminants  

V = V ( x , . . . , x , )  = de t lx~- ' [ ,  

with rows n u m b e r e d  i =  1 , . . . , n  and columns k = 1 , . . . , n .  We deno te  by 

V c'~ = V~,  ,~,k,...k, the subde te rminan t  of V obta ined  f rom V by removing t 

rows n u m b e r e d  i, < . - .  < i, and t columns kt < . - .  < k,. We define V ~ = 1. 

Let  xk satisfy I xk - xt I >= 1 for k ~ 1. Then for V t') = V i l , . . . , i l ; k ,  . . .  k ' LEMMA 1. 

one has 

t v,,, I 1-I (1+ I~,1)' < :  J '~k i ' " "kF  , t = 1,  " " ", n .  

(2.1) ~ - - =  I-I [ x , - x ~ , [  
j~ k l , "  .,k, 
s=l , ' " , l  

PROOF (by induction in n).  Obviously,  (2.1) is t rue for t = n. 

Case 1. Let  i~ = 1. Then  V ~'~ = FIs,,E,.,k,X s V~-L.~r-~,,:k,. .E,.  The  last deter-  

minant  is equal  to 

17"-" = 17i~-l....,,,-l~k~,-..,k, 

where  17 is the V a n d e r m o n d e  de te rminan t  of o rde r  n - 1 fo rmed  by numbers  xj, 

j ~  k~, so that I7 = V~.k,. Using product  representa t ions  of V and 17, 

(2.2) 1171V1= I-I [x,-xk,[-'. 
j#k~ 

Hence  

=--y- FI fx, I H rx,-xkl ' 
/~k~, . . - ,k ,  /# k~ 

The  product  of the two last factors does  not  exceed  IIi,~kl.., k, (1 + lx j  I)/I xj - xk, I; 

the first factor  we est imate  by means  of the inductive assumption.  This 

gives (2.1). 

Case 2. i , = n .  Here  

V "~ = 17~'-'~ = 17,,...,k,_.k2..-.~,, 17 = V..k, 

and an est imate similar to Case 1 gives again (2.1). 

Case 3. l < i j < - i , < n .  We can assume that  there  is a j ,  l_-<j_-<n distinct 

f rom all k~. Without  loss of general i ty  let j -- 1. We subtract  column 1 of V ~° 
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from each other column, reducing V (') to a determinant of order n - t - 1. In this 

determinant, we subtract from each row except the first the preceding row 

multiplied by a proper  power of x,. Let R be one of those rows, and R '  the 

preceding row: 

R : x l - x l ;  R':xl ' -x ' , ' ,  j g l ,  k l , . . . , k , .  

Thus l -  l ' =  1 + tr, cr => 0. The inequality o" => 1 means that there are some 

numbers i, - 1 in the gap between l' and I. Indeed, o" is precisely the number of s 

that satisfy l' < i, - 1 < I. 

The row R'  is multiplied by x~ '+' and subtracted from R. After  factoring out 

x j -  x, from the columns, R will be replaced by the new row 

(2.3) x:- '+x,x~-2+'"+xTx~' ,  j g l ,  k , , . . . , k , .  

Therefore  

v"'= I-I (x, - x,)  V' ,  
/~l ,k l , ' " ,kt  

V '= Do+x,Dl+ "" +x':D,,, 

where the determinants Do, D,, . . . ,  D,, are obtained from V' by replacing row 

(2.3) by rows x~-', x~-2, .. -, x~' respectively. The same operation may be per- 

formed upon the D~ with respect to other  rows of type (2.3) with o" => 1. If their 

number is q, and o'1,...,trq are the lengths of the gaps, we obtain 

o- 1 or 2 O-q 

i l  i 2 - " v'= 2 x, y. x, . . .  2 v,',x?, 
i 1 = 0  i 2 = 0  i q = O  

where f'(') are subdeterminants (with properly chosen rows and with columns 

k,, . . . ,k,  omitted) of the determinant Q = V,:. Let J~7/(t)= maxl V~')I, then 

IV'[<=~l(t)(l+Ix,l+ ... + Ix,l",).-.(l + Ix,l + ... + Ix,l"~) 

=</~Tf(t) (1 + Ix~l) ~' ..... 

= M(t)(1 + Ix,I)'. 

Therefore,  using again formula (2.2) with k, replaced by 1, 

- ~ l  < ~ Ix,f)' FI fx,- x,I = f v l (1 + . , , . k .  ,k, 

=~vtl(1 ~ t +Ix, r)',=,..,11 Ix,-xk.l-'. 

To the quotient M / V  we can apply (2.1), and obtain the desired relation for V. 
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LEMMA 2. 

M > 0 ,  

(2.4) 

PROOF. 
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Let x~ = 32k+~, k = 1,...,n. Then, for some absolute constant 

I V  ') 
<=M', t - -O , . . . , n .  

The right-hand side of (2.1) is the product of t quotiens 

Os = 17I (1 + x , ) /  1--I Ix , -xk,  I, s = 1 , - " , t .  
j~kl," ',kt / j ~ k l , "  ',kt 

To estimate one of them, we denote the xj appearing in the products by yl, '" ", yq, 

q = n - t, we put y = xk,, and assume that yl < . . .  < y, < y < y,+, < . . .  < yq. 

(1+ y O O  + 
(y - y , ) " - ( y  - y , ) ( y , + , - y ) . - . ( y q  - y )  

=_ (1 + y ; ' ) . . . ( 1  + 
( y / y ~ -  1)- . -(y/y,  - 1)(1 - y/y,+,) . . .  (1 - y / y q )  

We can omit the first i factors in the denominator, as they are => 1, and obtain 

Q , <  ~ ( l + ~ - ~ - k ) / ~ ( 1 - ~ - c )  = M .  

§3. The main theorem 

THEOREM 3. There exists a function f E C [ -  1, + 1] and a constant c > 0 with 

the property that for infinitely many n, the polynomial P, of best approximation to f 
of degree <=n has form (1.1) with s(n)>~c log n. 

PROOF. The odd function f will be given by 

2 (3.1) f ( x ) =  bkT~,(x), fb~l<=-~. 
k = l  

For the Ceby~ev polynomials T3~ we have 

K 

T3~(x)= ~c ,kx  2'+', K = ½ ( 3 k - 1 ) ,  k = 0 , 1 ,  . . - ,  
i = 0  

(3.2) 

c,k=( -1)K-~K 2K+l+i+l ( K + i + I \  2 i + 1  ) 2  , 2, i = O , . . . , K  

(see [2, p. 32]). Hence 

Then 
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c ' k = ( - 1 ) " - ' ( 2 i + l l ) ! 2 2 ' 3 k ( K + i ) ' " ( K - i + l )  

1 .~z,q~2,÷,)k (1 + K ) . . .  (1 _ ~__1) = ( - 1 ) g - ' ( 2 i + l ) ! -  ~ 

We  shall assume that i =< k. Then we obtain 

( 2 i + 1 ) ! -  - ' = ' 

where  y is a constant.  Let 

(3.3) 
t c,k = ( -  l )" - '  1 

(2i + 1)------~ 22` 3c2'+'Pd'k ' 

( °~'kk 2) (2,+')(k-p) 
d i , =  l +  3k 3 

We  will consider  the determinants  C, D and the Vande rmonde  determinant  V, 

fo rmed  by the e lements  c,k, d~k and 3 (2~+')~k p) for i = 0 , - . - , p ;  k = p , . . . , 2p .  Let 

C ~'), D (°, V °~, t = O, 1,.. . ,  n, be their subdeterminants .  We first prove 

(3.4) D ~ 0, t D,k/D I ~ B,  

where  B is a constant.  

We  treat D as a function of N = (p + l) z variables a,k, which we also denote  by 

/3j, j = 1 , . . . ,N .  We have I/3j I = < yp23-P. A partial derivative D (') of D of order  t 

with respect  to some of the/3j has as its value the corresponding V ('), if all/31, are 

zero. The  Taylor  formula for D is therefore  (with proper  V('):  

D = V +  

I°l V-I 

E J v"'t3','. 
,=l It ..... +~,=,lll ! IN! 

~N 1 1 ( Cyp23_p ), 
t = l  I . . . .  17] IN! 

(p + 1)! (Cyp23 ~), 
<= ~-~ ~ 11' lN!(p + 1 t)! t = l  l t + . - + I N = I  . " " " 

= [1 + (p + 1)2Cvp23-P] p+'- 1 

CTpS < 
c o n s t  3p = , 
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for all large 

This yields 

as required. 

Formula (3.3) 

p. Then ½_-< D/Vt<= 3, so that D ~ 0 .  Similarly, ID'/V'I<= 3. 

jD I D f iofrvi -~- =<2 V --2 ~ ;  V <=3M=B, 

shows that we can obtain the determinant C from the 

determinant D by multiplying its i-th row by the factor 

1 
( - 1 ) ' ( 2 i +  1)-------~22'3 (:'+')P, i = 0 , . . . , p ,  

and by multiplying the k-th column of D by ( -  1) K. Similarly with C'  and D'.  

Hence 

-D--I (2i + 1)! 3_(2,+,), 

Here i _-< p, and we obtain, using (3.4), 

(3.5) - ~ - N B 3  p, i = 0 , . . . , p ;  k = p , . . . , 2 p .  

We define inductively integers p~ so that the intervals [p, 2pt], 1 = 1,2,. .-  are 

disjoint, and numbers bk satisfying lb~ IN k -2 for p~ N k N2p~, l = 1 , 2 , . . . .  

Outside of the intervals we put bk = 0. The bk are selected in such a way that the 

coefficients of x 2'÷~, i = 0,-. ",pt in the sum St(x) = Ek~2p, b~ T3 k (x) are zero. Then 

N is a polynomial of form (1.1) with s _-> 2p~ + 3, of degree n = 3 2p,. We have 

s >_- (log 3) -~ log n. An appeal to Theorem 1 would then complete the proof. 

Let p , . .  ",p~-z and the corresponding bk be already known. Let P~ denote the 

coefficient of x 2'*' in the polynomial S~_,; it is zero for i > 32P' , (and for i _-< pt-z). 

At step l, we select pt so large that 

(3.6) 

2pt-1 < pl 

Bp < p ;23p', p= ,Jp, J. 

The condition that the polynomial Sz does not contain x 2'÷' for i <= pl leads to the 

system of equations 

(3.7) pi + ~ c,~bk = 0 ,  i = 0 , " ' , p l  
pl <~k ~2pt  
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for the b~. This system is solvable, since its determinant C~  0. For the bk we get 

by (3.5) and (3.6) 

b~ = - - - (" O , ,  
i = ( !  

lb ~ i <= pB3-P, < p;2 <= k 2, 

proving Theorem 3. 

Added in proof (November 
established that A(0)= 02. 

10, 1977). Satt and Varga [3] have recently 
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