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INCOMPLETE POLYNOMIALS OF BEST
APPROXIMATION'

BY
G. G. LORENTZ

ABSTRACT

The main theorem proved in this paper is as follows. There exist odd functions
f € C[—1,1] with the following property. Let P, be the polynomial of best
uniform approximation to f of degree = n. Then for infinitely many n, P, has
zero of order s(n)=c logn at x =0.

§1. Lemmas and intermediate results

We use the term ‘““incomplete polynomial” to denote a polynomial of the form
(1.1) P(x)= 2 ax*,
k=s

where s > 0. We would like to have s as large as possible. In [1] we have proved,
among other things, the existence of a function 0 <A(#)<1, defined for
0< 8 <1 with the following property. If P.(x) is a sequence of polynomials
(defined for infinitely many n) of form (1.1) with s = s(n) = 6n, and if | P.(x)| = 1
on [0,1], then P.(x)— 0 uniformly on each interval [0,8], § < A(8); this is not
always true for 8 > A(8). The exact value of A(f) is not known, but we have
shown in [1] that 8°=A(0)< 6, 0< 8 <1. Moreover, R. Varga (private com-
munication) finds that

—A(B) _ 37 _
Ll_r}g P = 16 =1.850....

In the present paper, we investigate the possibility that a given function
f € C[—1, +1] has incomplete polynomials as its polynomials of best approxi-
mation. Our main result is that s(n) = const - log n can happen infinitely often for
such polynomials.
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The problem solved here has been formulated jointly by J. Blatter and the
author at IMPA (Rio de Janeiro) in the Summer of 1976. I am indebted to K.
Zeller for the idea of using series (3.1) in this problem.

THEOREM 1. Let P,, P,., be polynomials of best approximation (of degrees = n
and =n + 1, respectively) to f € C[a,b), and let P,#P,..,. Then Q = P,,,— P,
has n+1 distinct real zeros, which lie in the open interval (a,b).

Proor. Let a=x,<x;<- -+ <x,.=b be n+2 points of the Ceby§ev
alternance for P,; if for instance f(x;)— P.(x;)>0, then

fG) = Pux) =[If = P > f = Paii [ Z f(x:) = Pua (1),

so that Q(x;)<0. Similarly, Q(x..,)>0. Thus, Q changes sign on each of the
intervals [xi, xi.1].

RemARK. The same proof yields, for two polynomials P, # P.., m >n of best
approximation, the fact that P, and P, cannot have a common root of
multiplicity >m — n.

To S. Bernstein we owe the observation that if b, =0, £b, < + », then all
partial sums of f = 27 b, T (where T, denotes the n-th Cebysev polynomial)
are polynomials of best approximation to f on [— 1, 1]. It is important to know
that the restriction b, 20 is not essential.

THEOREM 2. Let n,p,j=0,1,--- be odd positive integers so that n;_,
divides n;.
Let the b; satisfy 25 |b;| < 4+, and let

(1.2) f(x)z 2 b/Tn,-(x)Pi-

If for an integer k = 1
(1.3) Mo Pt t2S n,

then the sum P = 357 bT,! is the polynomial of best approximation of f among all
polynomials of degree = n, —~?2 (hence also among all polynomials of degree

= nk»lpk—l)-

Proor. Let g(x)=Z37, b; T7; we consider the function h on the circle T
given by

h(t)=g (cost)= Z b cosfinit, t&€T.
j=k
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We may assume that g and h are not identically zero. Noticing that 3 (n; /n, + 1)
is an integer for j = k, we have, with ¢ = 7/(2n,),

h(cxt)= Zk bie; sin® (= njt), &=(- 1)%("/"1«“)"/ .
=

Hence h(c —t)= — h{c + 1), thatis, h is odd at the point ¢ € T. It follows that h
has a maximum M >0 and a minimum — M on T.

Now h has period 27/ny, hence M and — M are taken on each of the n,
intervals

[&fﬂ 2_7T£’+_1)) 1=0,m—1.

ny ’ [(%

There must be a monotone sequence of 2n, points on T, where h takes
alternatively the values + M and — M. On at least one of the intervals [0, 7],
[ — m,0], we have a sequence of this type consisting of n, points. Since h is even,
this happens on each of them. The same is true for g(x), —1=x = + 1. In view
of (1.3), our statement follows from the theorem of Cebys3ev.

Let f € C[a,b]. Is it possible that polynomials P, of best approximation to f
are incomplete polynomials (1.1) with large s = s(n)? This cannot happen for all
large n. Indeed, by Theorem 1, unless P, and P,,, are identical, they cannot have
0 as a common zero of multiplicity s = 2, and if 0 € (a, b), this cannot happen
even with s = 1. However, the phenomenon in question can happen infinitely
often.

In §3 we prove that one can have s = s(n) = ¢ log n, for infinitely many n. In
the opposite direction, we have, if all integral values are taken by s(n),

(1.4) s(n)=const Vn, n=12---.

Indeed, let n, be selected so that s(n)=s for n = n,. The remark to Theorem 1
gives n, —n,_; = s — 1, hence n, = is(s — 1).

Polynomials P, of best approximation of f € C[~1, + 1] can all vanish for
x = 0; this happens for all odd functions f. We offer the conjecture that this is the
only possible case.

Conjecture.  If all polynomials of best approximation of f& C[-1, + 1]
vanish at the origin, then f is odd.

A related conjecture has been formulated by 1. Borosh: A function f €
C[—1, +1] is odd if its polynomials of best approximation satisfy Py _, = Py,
k=1,2,---;itis even if Py = Pyyy, k =0,1,--- .
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§2. Estimation of Vandermonde determinants
We shall need results about the Vandermonde determinants
V=V(xy,- -, x,)=det|xi'|,

with rows numbered i =1,--,n and columns k =1,---,n. We denote by
V® =V, ik the subdeterminant of V obtained from V by removing ¢
rows numbered i, < --- <i and f columns k< --- <k,. We define V"W =1,

LemMma 1. Let x, satisfy |x. —x,l>1 for k#1l Then for VO=V, . &
one has

v® ) H (1+|xil)'
2.1) * v ’gl__"x;’_’&___’ t=1,-n.
H | x; = xi,
jE kL ke

s=1,t

Proor (by induction in n). Obviously, (2.1) is true for t = n.
Case 1. Let iy=1.Then V=1, % Vi1, i-t.m:knk The last deter-
minant is equal to

S =1) _
V - Viz_]"”\i[_l;kz."‘.kg

where V is the Vandermonde determinant of order n — 1 formed by numbers x;,
j# ki, so that V =V,, . Using product representations of V and V,

22 Vivi=I1 15— xl".
Ak
Hence

2[5 Tl Tl

JEkL ke j#k

The product of the two last factors does not exceed ;i ..., {1+ 1% )% — xi[;
the first factor we estimate by means of the inductive assumption. This
gives (2.1).

Case 2. i, =n. Here

V(‘) = ‘7(‘_1) = Vil,"'yk.—l;kz-"'ykn ‘7 = Vn,k,
and an estimate similar to Case 1 gives again (2.1).
Case 3. 1<i;=i <n We can assume that there is a j, 1=j = n distinct
from all k.. Without loss of generality let j = 1. We subtract column 1 of V*
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from each other column, reducing V¥ to a determinant of order n — ¢t — 1. In this
determinant, we subtract from each row except the first the preceding row
multiplied by a proper power of x,. Let R be one of those rows, and R’ the
preceding row:

R:xf—x{; R’:x;‘—x'{, JEL ky, oo ke

Thus | —I'"=1+0, o Z0. The inequality o 21 means that there are some
numbers i, — 1 in the gap between I’ and . Indeed, o is precisely the number of s
that satisfy I' <i,— 1<l
The row R’ is multiplied by x{"*' and subtracted from R. After factoring out
x; — x, from the columns, R will be replaced by the new row

2.3) [ xax [P e+ xix), jEL Ky, ok
Therefore
V= H (x, —x) V', V'=Do+x,D\+ - + x7D,,
ALK ke

where the determinants Dg, D), - -+, D, are obtained from V' by replacing row
(2.3) by rows x|, x|"% -+, x| respectively. The same operation may be per-
formed upon the D; with respect to other rows of type (2.3) with o = 1. If their
number is g, and o, -+, 0, are the lengths of the gaps, we obtain

o, o, o,
' 2: i 2: i E: @),
V— Xt X, V()x;',
fre i7=0 ig=0

where V® are subdeterminants (with properly chosen rows and with columns
ki,---,k, omitted) of the determinant V = V,,. Let M(t) = max| V|, then

IVISM@E)A+]|x]+ -+ +]x]+ 0 +]x]%)

= M1+ )
= M()(1+]|x)).

Therefore, using again formula (2.2) with k, replaced by 1,

M0 pny T x-xl

~ Vi

vy ke

MO0y T1 ne

To the quotient M/V we can apply (2.1), and obtain the desired relation for V.
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Lemma 2. Let x, =3*"", k =1,---,n. Then, for some absolute constant
M >0,
()
2.4) ’V =M, 1=0,n.

Proor. The right-hand side of (2.1) is the product of ¢ quotiens

Q, = (1+x)/ n }x,—xks), s=1,--t.

/?‘kl

To estimate one of them, we denote the x; appearing in the products by y,, -+, y,,
g =n-—1 we put y =x,, and assume that y, < - <y, <y <y, ;<. <y,
Then

Ity -(+y,)
G=y) -y =y)G=y) - (a—y)

_ (+yi)--(A+y.)
Gy =D lyi = DA =yly) (L= yly,)

We can omit the first i factors in the denominator, as they are = 1, and obtain

A1{red)/ )

§3. The main theorem

e =

THEOREM 3.  There exists a function f € C[ -1, + 1] and a constant ¢ >0 with
the property that for infinitely many n, the polynomial P, of best approximation to f
of degree =n has form (1.1) with s(n)=c logn.

Proor. The odd function f will be given by

(3.1) fx) = Z BT (x), 1= s

For the Cebysev polynomials Ty we have

K
T3k(x): Ecikxz”', K:%(:&k_l)’ k=01,

i=0

(3.2)
ke 2K+ <K+i+1> N
GO L aier )2

(see [2, p. 32]). Hence
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K—i 1 2ink . H
o 1\K-i 1 2 (ﬁﬂ)k( _‘_)( _i__l)
== (2i+1)!2 3 % =%

We shall assume that { = k. Then we obtain

1

1y K- aikk2
c=(=1) Qi+ 1)

22i3(2i+l)k (1 +_3_k)’ ‘aik ] < v,

where y is a constant. Let
—(_ K—i___l___ 2i ARi+1)p
=D G2 3 e
(3.3)
aikkz

dik = <1 + ‘3T)3(Zi+‘)(k_p> .

Israel J. Math.

We will consider the determinants C, D and the Vandermonde determinant V,
formed by the elements ca, di and 3% P for i =0,---,p; k =p,---,2p. Let
C®, D, V¥ t=0,1,---,n, be their subdeterminants. We first prove

(3.4) D#0, |D./D|=B,

where B is a constant.

We treat D as a function of N = (p + 1)* variables a,, which we also denote by
B,j=1,---,N. We have | B;| = yp?37°. A partial derivative D® of D of order ¢
with respect to some of the 8; has as its value the corresponding V', if all B, are

zero. The Taylor formula for D is therefore (with proper V*):

+1
D_—_V+’E > ?T_'...LV(OB’I‘...B::;’

‘:‘“l*'”‘*’N:’l IN'
1 29-p\t
e (Ew3T)

< 3 (p +1)

=1 z|+-~ZzN:111!"'l~!(p +1-

=[1+(p +1PCyp37°P7" -1

51 (Cw3)
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for all large p. Then ;=|D/V|=3, so that D#0. Similarly, |[D'/V'| =}
This yields

2| 2|22 [ ] om-,

as required.
Formula (3.3) shows that we can obtain the determinant C from the
determinant D by multiplying its i-th row by the factor

1N 1 2i q2i+1)p F 0 ...
DG =0

and by multiplying the k-th column of D by (— 1)*. Similarly with C' and D".
Hence

G
C

_ ’ Dy ’ @i+ Dl iy
D| 2% :

Here i = p, and we obtain, using (3.4),

Ci

(3.5) .

§B3*P’ i:O’...’p; k:p,...’2p.

We define inductively integers p; so that the intervals {p,, 2p:], I = 1,2,-- - are
disjoint, and numbers b, satisfying |b |=k™* for p=k =2p, [=1,2,---.
Outside of the intervals we put b, = 0. The b, are selected in such a way that the

@ i=0,---,p in the sum S;(x) = Zy =), b T« (x) are zero. Then

coefficients of x
S, is a polynomial of form (1.1) with s =2p, + 3, of degree n = 3’". We have
s = (log3)'log n. An appeal to Theorem 1 would then complete the proof.

Let py,- -+, pi-: and the corresponding b, be already known. Let p; denote the
coefficient of x**' in the polynomial S;.,; it is zero for i > 3" (and for i = p,_,).
At step [, we select p, so large that

2[71—1 <p
(3.6) [
Bp <p’3, p=3|p].

The condition that the polynomial S, does not contain x**' for i = p, leads to the
system of equations

(37) Pi + C,'kbk = O, i= O, o ',pl

pi=k =2p;
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for the b. This system is solvable, since its determinant C# (. For the b, we get
by (3.5) and (3.6)

Py
bk = - Z%F)E’

b |=pB3 ™" <pi*=k?,
proving Theorem 3.

Added in proof (November 10, 1977). Saff and Varga [3] have recently
established that A(6) = 6°.
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